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Abstract
Aging is an intricate process driven by various factors, including the dynamic interplay between the host microbiome and 
aging. The gut microbiome undergoes several changes throughout the entire lifespan of a healthy human. Numerous fac-
tors, ranging from the mode of childbirth and sex differences to lifestyle, are known to impact the gut microbiome in healthy 
individuals. As a result, the gut microbiome varies widely among individuals and exhibits robustness after early childhood. 
However, as one ages, the human body undergoes several important changes, and so does the gut microbiome. This review 
addresses the relationship between aging and the dynamics of the host microbiome from in utero to over 100 years of age. Ad-
ditionally, we attempted to untangle this intricate relationship between the gut microbiome and aging by presenting various 
microbiota-dependent mechanisms involving intrinsic and extrinsic factors such as metabolic, neurological, immunological, 
dietary, and lifestyle factors that potentially regulate aging. Furthermore, we aimed to highlight microbiome-based aging in-
tervention studies focused on modulating or rejuvenating the microbiota for healthy aging and longevity.
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Introduction
All organisms undergo the natural process of aging, which vast-
ly regulates their body shape, health, and functioning. An aging 
phenotype is characterized by nine genetic hallmarks: genomic 
instability, telomere attrition, epigenetic alterations, loss of pro-
teostasis, deregulated nutrient sensing, mitochondrial dysfunction, 
cellular senescence, stem cell exhaustion, and altered intercellu-
lar communication.1 As one ages, the body experiences numerous 
physical and biochemical changes. On average, people >30 years 
old experience cell loss in various organs such as muscles, liver, 
and kidneys. Aging is also accompanied by the demineralization of 
bones, which reduces their density, and changes in the body’s wa-
ter content, which influence overall health.2 Another key process 
during aging is the accumulation of body fat in middle age. This 
results in the accumulation of around one-third of extra fat in this 
age group as compared to youngsters, leading to an increased risk 
of insulin resistance.3 Eventually, aging may result in the develop-
ment of numerous diseases and disorders.2 However, this physical 
decline varies due to several factors, including the organism itself, 
gender, geographical location, lifestyle, etc.2

The collection of genomes from all microbes (including bacteria 
and fungi) and viruses, as well as microbial structural elements that 
inhabit the host, is termed the “microbiome”. However, the terms 
“microbiome” and “microbiota” are often used interchangeably, 
though there are important differences between the two. Microbiota 
refers to the living microorganisms present in a defined environ-
ment, such as the gut, oral, skin, etc. The human gut microbiota 
(GM) comprises a rich and diverse microbial community consisting 
of more than a trillion microorganisms that live in harmony with 
each other.4 Several studies have highlighted the significant role of 
GM in human health and disease.5 Many studies have focused on the 
relationship between changes in GM and aging, considering vari-
ous physiological aspects of this process, such as alterations in ben-
eficial metabolite producers and increased susceptibility to disease 
due to a weakened immunological response.5 Indeed, significant 
associations between the gut microbiome and both gastrointestinal 
and extra-intestinal diseases have been reported.6 In this review, the 
importance of both intrinsic and extrinsic factors associated with 
the gut microbiome and aging is comprehensively discussed. Ad-
ditionally, the interactions of gut microbes with various host-asso-
ciated processes, such as sex differences, neurology, and immune 
responses, are highlighted in detail. Finally, intervention studies on 
modulating or rejuvenating the microbiome for healthy aging and 
longevity are reviewed to understand the associations between the 
gut microbiome and the aging process.

Dynamics of gut microbiome during humans’ lifespan
The gut microbiome and aging processes are influenced by vari-
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ous intrinsic (gender, genetics, and ethnicity) and extrinsic factors 
(geographical location, demographic factors, physical activity, 
diet, medications, smoking, reduced social contact, and others).7 
The aging process involves specific changes in GM and metabolic 
composition (Fig. 1). The gut microbiome transduces environ-
mental signals, modulates disease risk factors in all age groups, 
and varies with host age. Overall richness of the gut microbiome 
declines while a particular frailty-linked bacterial group increases 
when measures of biological age are applied with adjustments for 
chronological age.8

Gut microbiome alterations in infancy and early childhood
At birth, a sterile environment is transformed into a rich and ac-
tive microbial ecology.9 Although the embryo is considered sterile, 
the presence of germs in semen, placenta, amniotic fluid, umbili-
cal cord blood, and meconium indicates that the fetus is colonized 

by microbes in utero.10 This suggests that the transmission of the 
maternal microbiome to the offspring might occur vertically. The 
gestational age at birth, delivery method, feeding strategy, and ma-
ternal variables are known to impact the infant’s GM colonization 
process.10

The GM of infants (<1 year old) is known to be less diverse,11 
while that of adults is relatively stable.12 The core GM of infants 
can be categorized into six groups based on the prevalent popu-
lation and makeup.13 Group 1 includes Bifidobacteriales, Lacto-
bacillales, Anaerostipes, Clostridiales, and Faecalibacterium; 
Group 2 includes Verrucomicrobiales and Bacteroidales; Group 3 
includes Clostridiales; Group 4 includes Enterobacteriales; Group 
5 includes Pasteurellales; and Group 6 primarily includes Seleno-
monadales. More recently, the GM of infants has been found to in-
volve core species from the genera Bifidobacterium, Bacteroides, 
Clostridium, Lactobacillus, Streptococcus, Veillonella, Akkerman-

Fig. 1. Gut microbiome alterations from infancy to old age in humans. The composition of the gut microbiome exhibits genus-level variations across differ-
ent age groups. The early-age gut microbiome is shaped by the embryonic environment, type of delivery, and exposure to microbes through breast/formula 
feeding. During weaning, the microbiome undergoes changes from a simple (less diverse) to a complex (more diverse) microbial mixture and attains stabil-
ity until adulthood. During puberty, the microbiota differentiates based on the sex of the host due to associated hormonal changes. In elderly individuals, 
the microbiota is affected by lifestyle, dietary habits, and immunosenescence of the intestinal immune system. In this age group, the microbiome is mainly 
dominated by pathogenic and opportunistic microbes. The major changes in the metabolites associated with human GM and the length of the intestine 
concerning the aging process are also shown. Created by biorander.com. GM, gut microbiota; HMOs, human milk oligosaccharides; IgA, immunoglobulin A; 
SCFA, short-chain fatty acids; TGF-β, transforming growth factor-β.
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sia, and Collinsella.14

Newborns are exposed to vaginal microorganisms during birth, 
which are mainly dominated by Prevotella and Lactobacillus.14 
Contrarily, infants delivered by cesarean section (c-section) have 
a prevalence of Corynebacterium, Staphylococcus, and Propi-
onibacterium spp. (Fig. 1), resembling the microbial composi-
tion found on the skin.14 Immediately after birth, species of the 
genus Lactobacillus (L. gasseri and L. rhamnosus) are predomi-
nantly found in the GM of infants.15,16 Since meconium contains 
several species of the genus Lactobacillus, such as L. reuteri, L. 
plantarum, L. sakei, L. brevis, and L. casei, the relative abundance 
of these taxa is substantially greater in infants delivered vaginally 
than by c-section.17 This maternal-to-offspring transmission of the 
microbial community is a crucial early-life checkpoint because 
when a baby exits the umbilical cord-supported uterine environ-
ment, commences respiration, and actively seeks a meal, the baby 
faces a significant metabolic shift. The early-life microbiome is 
crucial for the development of the brain and immune system of 
offspring which have an impact on the infant as well as the long-
term health.14

In breastfed infants, the GM is predominated by Bifidobacte-
rium, whereas Bacteroides and Bifidobacterium predominate in 
the gut microbiome of formula-fed infants.18 However, in the feces 
of vaginally delivered and formula-fed infants, the abundance of 
Bacteroides is relatively higher compared to c-section-delivered (p 
< 0.01) and breastfed babies.19 Furthermore, the c-section delivery 
causes a delayed colonization of Bacteroides, which may be linked 
to the Th1 response.20 Nursing exposes the baby to the mother’s 
microorganisms, antibacterial agents, and nutrients crucial to the 
baby’s well-being. Human milk oligosaccharides (HMOs), natu-
ral prebiotics present in breast milk, specifically influence the 
development of beneficial bacteria in an infant.18 HMOs do not 
directly provide nutrients for infants; instead, they influence the 
development of the infant’s gut microbiome and promote long-
term health.21 Bifidobacteria play a crucial role in the ability of 
an infant’s intestinal tract to absorb HMOs.22 However, there is 
also evidence of a negative correlation between the amount of bi-
fidobacteria and the concentration of HMOs in newborn feces.21 
Importantly, the stool samples of infants show a higher relative 
abundance of Bifidobacterium, which is associated with the risk 
of later acquiring non-communicable diseases like asthma and 
obesity. Additionally, the development of innate and acquired im-
munity in early infancy can be promoted by Bifidobacterium and 
Lactobacillus.23

In the first year of life, up to weaning, opportunistic microbes 
frequently colonize the gut ecosystem based on the surroundings 
the baby is exposed to.24 Such early colonization shows the pri-
mary predominance of aerobes like Staphylococcus, Streptococ-
cus, and enterobacteria, followed by anaerobic colonizers such 
as clostridia and eubacteria. It is commonly believed that Bifido-
bacterium dominates the microbiota of breastfed newborns after 
these earliest stages.9 After weaning or ablactation, the intestinal 
immune system and gut mucosa undergo developmental changes. 
These changes, along with the introduction of solid food, cause the 
transformation of the human GM into an adult-like composition 
that is resilient and characterized by increased microbial diversity,9 
which remains largely constant throughout healthy adulthood.25 
These observations suggest that the composition of the GM alters 
as the host ages.

Gut microbiome alterations during puberty and adulthood
The adult microbiome acquires characteristics related to gender 

due to the influence of sex hormones associated with puberty 
(Fig. 1). Numerous studies on animal models and humans have 
shown different microbiome compositions in males and females. 
A study on pre-obese diabetic mice reported similar microbiota 
compositions in both sexes before puberty. However, after puberty, 
the male mice’s GM showed shifts in composition, with increased 
abundance in the families Porphyromonadaceae, Veillonellaceae, 
Kineosporiaceae, Peptococcaceae, Enterobacteriaceae, Lacto-
bacillaceae, Cytophagaceae, Peptostreptococcaceae, and Bacte-
roidaceae.26 Org et al.27 conducted a study on the GM of 89 inbred 
mice, showing distinct composition and diversity between sexes of 
each strain, with a high abundance of Actinobacteria and Teneri-
cutes in males. However, the biological definition of aging differs 
between humans and mice and remains debatable.

Sex-based microbiome differences have also been observed in 
humans. Sex hormones, including estrogen and testosterone, play 
significant roles in influencing the GM during adolescence or 
puberty (age group of 13–17 years). For instance, Adlercreutzia, 
Clostridium, Dorea, Parabacteroides, and Ruminococcus have all 
been associated with testosterone levels.28 An investigation of the 
fecal microbiota of opposite-sex twins aged 13 to 17 years showed 
the highest variations between them compared to same-sex twins 
(Fig. 1).29 A large-scale investigation of more than 2,500 Chinese 
individuals discovered sex-specific markers, which become less 
pronounced with age.30 Similar observations were made in two 
other studies based on large cohorts from Israel, the Netherlands, 
and the American Gut Project.30–32 Sex-dependent changes in 
microbiome composition (β-diversity) were more pronounced in 
younger individuals compared to older ones, with females having 
higher GM α-diversity than males.31 Apart from distinct microbial 
communities, differences in the abundance of bacterial genes and 
metabolic pathways have also been reported between males and 
females. For example, metabolic pathways associated with carbo-
hydrates, lipids, and proteins were prominent in the gut microbi-
omes of females,33 showing the possibility that metabolites such 
as fatty acids may be involved in adipose tissue remodeling during 
puberty.34

In adulthood, the gut microbiome reaches its highest level of 
complexity and richness, with the development of a strong “core 
microbiome” that increases adaptability and decreases sensitiv-
ity to both internal and external stresses.35 The maturity of the 
microbiome occurs concurrently with the growth of the host or-
gans, particularly the gut, which lengthens with age and creates 
new habitats for the microbiome to diversify and multiply.14 A 
gut ecosystem of a healthy adult is estimated to include around 
1,000–1,200 phylotypes up to the species level, of which 75–82% 
are considered unculturable.9,36 However, this notion was chal-
lenged by a recent study using a broad-range yeast casitone fatty 
acid agar-based culturing approach for massive bacterial identifi-
cation and discovery.37 A substantial percentage of this diversity 
(90–99%) is restricted to the bacterial phyla Firmicutes (including 
major genera Clostridium, Faecalibacterium, Lactobacilli, Rumi-
nococcus) and Bacteroidetes (Bacteroides, Prevotella), where the 
dominating Firmicutes (50–80%) are predominantly composed of 
bacteria from Clostridium clusters XIVa and IV.38 The human gut 
also contains other bacteria belonging to the phyla Actinobacteria 
(3–15%), mainly genus Bifidobacterium; Proteobacteria (1–20%), 
mainly Escherichia, Helicobacter, Shigella; Verrucomicrobia 
(0.1%), mainly Akkermansia, Cyanobacteria, Fusobacteria, Len-
tisphaerae, and Spirochaetes.9,38,39 Although the changes from 
youth to adulthood may not be considered aging, the changes in the 
body and microbiome during these stages can influence later life 
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stages. For example, Valeri and Endres summarized differences in 
the sex-associated GM throughout the human lifespan, from in-
fancy to elderly age (>75 years).28

Gut microbiome alterations in the elderly age group
The elderly microbiota is generally characterized by a decline in 
microbial diversity, the emergence of Bacteroidetes phyla at the 
expense of Firmicutes, a rise in the abundance of opportunistic en-
teropathogens, and a decrease in species that produce short-chain 
fatty acids (SCFAs), particularly butyrate.9,40 A recent study found 
that an increase in fecal Christensenellaceae, Porphyromonadace-
ae, and Rikenellaceae was specifically linked to more favorable 
body composition in old age, namely decreased abdominal obesi-
ty.41 Additionally, the microbiome has been linked to alterations in 
bone density with age. Lactobacillus reuteri has shown promising 
results in maintaining and increasing bone mineral density in mu-
rine models and an increase in tibial bone density in elderly wom-
en.42,43 These studies provide valuable insights that L. reuteri may 
be an effective treatment for osteoporosis.42 The aged-type micro-
biota exhibits a less diverse microbial community, similar to what 
occurs during the initial stages of our lives. It is characterized by 
a rise in environmental facultative aerobes, such as Staphylococ-
cus, Streptococcus, and Enterobacteriaceae, along with a decrease 
in anaerobes like Bacteroidetes and Clostridium clusters IV and 
XIVa. In contrast to the microbiota of newborns, the old type of 
microbiota is marked by a lower abundance of Bifidobacterium.9 
Additionally, longevity and slower aging may also be influenced 
by the gut microbiome. Christensenella, Akkermansia, and bifido-
bacteria were reported in greater abundance in the gut of exceed-
ingly older people (above 99 years old; known as centenarians Fig. 
1), suggesting potential life-extension effects.44 These gut micro-
biome members may be crucial in defending against pathogenic 
infection and various other environmental stresses.

Interesting associations have been observed between aging and 
microbiome diversity in terms of the number of distinct species 
and their relative abundance (richness and evenness) in a given 
microbial ecosystem or between ecosystems (known as α-diversity 
and β-diversity, respectively). For example, an increase in the frail-
ty index, which is regarded as a quantitative indicator of biological 
age, was found to be associated with a decrease in the diversity of 
the core microbiome.45 In contrast, a higher taxonomic α-diversity 
of the gut is linked with longer lifespans and better aging,46 while 
a decrease in gut microbial diversity has been linked to hospi-
talization.47 Notably, numerous studies have demonstrated that 
α-diversity, or more specifically microbial richness, is not nega-
tively associated with chronological age but is adversely correlated 
with the frailty index (biological age).7

Factors affecting the aging-related alterations in hosts and 
their gut microbiomes
The gut microbiome plays an essential role in host health by edu-
cating the immune system and producing health-promoting micro-
bial metabolites like SCFAs, which are signature metabolites of 
healthy aging as found in studies on centenarians.40 Perturbations 
in gut homeostasis are common with aging, causing a condition 
termed “leaky gut”, defined as increased permeability of the gut 
and unregulated tight junction blockade.48 Elderly people suffer 
from GM dysbiosis, with increased expression of proteolytic rather 
than saccharolytic genes, which intensifies inflammation due to 
an increase in pathobionts.49 The enhanced gut permeability al-
lows foreign substances to enter the bloodstream and then circu-

late throughout the body, leading to systemic inflammation. This 
causes “inflammaging”, which supports the growth of aerobic and 
facultative aerobic pathobionts and restricts strict anaerobes (such 
as the Firmicutes phylum), sustaining inflammatory conditions 
and increasing inflammation mediators. For instance, enteric path-
ogens such as Clostridium difficile and Helicobacter pylori dis-
integrate the intestinal barrier through different mechanisms and 
trigger chronic inflammation, which further aggravates microbial 
dysbiosis and gastrointestinal infections, including diarrhea, gas-
tritis, stomach cancer, pseudo-membranous colitis, and periodon-
titis.38 Inflammaging is linked to various age-related pathologies 
(Fig. 2), such as Alzheimer’s disease (AD), Parkinson’s disease 
(PD), obesity, heart disease, Type 2 diabetes, and cancer.31

According to a recent study, immunity, metabolism, and sur-
vival were all strongly impacted by variations in the gut micro-
biome of mice after exposure to antibiotics in their early lives.50 
Similarly, in humans, associations have been observed between 
the usage of antibiotics in early life and increased risk factors for 
shorter life expectancies, such as susceptibility to infections and 
obesity.31 In addition, excessive antibiotic use by residents of aged 
care facilities is shown to lower colonization resistance and in-
crease the prevalence of antibiotic-resistant bacteria, which may 
put the elderly at risk for fatal infections.51

Muscle mass, power, and functionality decrease by 3–8% per 
decade in individuals aged 30–60, with the decline rate being 
higher for those over 60 years.52 With aging, several changes at the 
cellular level contribute to sarcopenia pathology.53 These changes 
include a reduction in cell number and metabolism, twitch force 
and time, basal muscle protein synthesis (regulates muscle mass), 
disorganized sarcomere spacing, lower calcium transport capac-
ity, mitochondrial dysfunction, and the accumulation of fats within 
and around muscle cells. The gut microbiome contributes to the 
determination of skeletal muscle mass, function, and architecture 
as part of the aging process. Butyricicoccus and Clostridium XIVa 
are SCFA producers positively correlated with muscle mass.54 
These bacteria also produce host metabolites, including vitamin 
B12, lipids, folate, and microbial metabolites essential for muscle 
development. Gut dysbiosis and leaky gut are known to have a 
negative association with muscle protein synthesis due to inflam-
mation and declined defense action upon infection.54 Dysbiosis 
might also contribute to sarcopenia pathology, as changes in mi-
crobial diversity have led to reduced metabolites for muscle devel-
opment in sarcopenic rats.55

The skin, the largest body organ, is part of innate immunity, 
being the first line of defense. With age, skin becomes dry, stiff, 
and inflexible, losing some of its fatty tissues, making it thin with 
impaired sweat glands. The gut microbiome influences the skin 
microbiome via the gut-skin axis and gut-skin-brain axis. Skin re-
sembles the gut in the presence of epithelial cells, which are in 
contact with microbes, and a low adherence of microbes occurs 
due to a higher rate of cellular turnover, thereby reducing infection. 
Several studies have shown that gut microbial dysbiosis is related 
to various skin diseases such as psoriasis, rosacea, and acne vul-
garis, indicating a combined action of gut and skin microbiomes.56

Interplay between immunity and gut microbiome in aging
The immune system is the major host defense mechanism that pro-
tects against harmful stimuli, including microbes. The in utero en-
vironment is relatively sterile, and the immune system of the fetus 
exhibits tolerance to maternal alloantigens. The immune system 
gradually matures as the infant grows, attaining full maturity by 
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late childhood. As one reaches old age, their immune system de-
clines, leading to a variety of diseases. This strongly suggests that 
aging impacts the recognition of stimuli and may trigger several 
pathogenic processes linked with aging.31,48 Immunosenescence 
and inflammaging are two important hallmarks of the immune 
system in the elderly.57 Immunosenescence represents a decline in 
immune response in aging cells and is a complex biological pro-
cess. It predisposes the elderly population to infections and co-
morbidities, and the elderly exhibit weaker vaccination responses 
than young and middle-aged adults.58 Functional and phenotypic 
modifications in aging immune cells result in decreased immu-
nosurveillance and cytotoxic effector functions.59 Inflammaging 
refers to the rise in inflammation commonly observed with the 
development of some chronic inflammatory conditions as aging 
occurs. It also includes chronic low-grade inflammation that in-
creases the risk of common non-communicable diseases.60 With 
advancing age, the microbiome affects immunity and predisposes 
elderly people to oxidative and inflammatory disorders. Thus, an 
intricate link exists between immunity and the microbiome in ag-
ing, especially the gut microbiome.61

From infancy to old age, gut microbiome composition and de-
velopment are essential for the functioning, maturation, and regu-
lation of the host immune system. Many of the bacteria that colo-
nize the gut and other mucosal sites, besides being essential for a 
healthy life, also impact the development of the immune system.62 
Loss of gut microbial diversity or modifications in the composition 

of the gut microbiome (often referred to as dysbiosis) may potenti-
ate aging and disease.63 The mechanisms of the involvement of gut 
microbiome members in the development of immunity are well 
documented and reviewed.57,60,64,65

During aging, the host microbiome influences the local immune 
system in addition to epigenetics and host metabolism altera-
tions.61 Recent studies confirmed that immune cells are respon-
sible for the bidirectional regulation of changes in the diversity of 
the gut microbiome. For instance, changes in the gut microbiome’s 
composition, including a decrease in Faecalibacterium prausnitzii 
and an increase in Proteobacteria, are both linked to inflamma-
tory disorders brought on by aging.66 One notion is that maintain-
ing a “healthy” gut microbiome composition as one ages can aid 
in slowing down or ceasing the inflammatory aging process. It is 
known that several gut bacterial species, which belong to the gen-
era Bifidobacterium, Faecalibacterium, and Lactobacillus, have 
the potential to suppress the pro-inflammatory response at the gut 
epithelium level or indirectly block the transcription of pro-inflam-
matory genes, for example, by Bacteroides thetaiotaomicron.9,67,68 
Similarly, Akkermansia muciniphila, one of the few known species 
of the phylum Verrucomicrobia, is known for its potential to de-
grade mucin and promote intestinal integrity by reducing toxicity 
levels associated with high-fat diets. An increase in the abundance 
of Verrucomicrobia is also associated with better-quality sleep.69 
Badal et al.69 highlighted in their study that Christensenellaceae, 
Verrucomicrobia, and Akkermansia may support healthy aging and 

Fig. 2. Summary of age-related pathophysiological changes in host associated with gut microbiome. BBB: blood-brain barrier. Created by biorander.com.
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gut homeostasis by decreasing adiposity, inflammation, and the fu-
ture risk of developing metabolic disorders.

Associations of host metabolic alterations, gut microbiome, 
and aging
Microorganisms produce a wide range of organic and inorganic 
molecules that can interfere with the host’s metabolism and af-
fect aging (Table 1).1,39,70–83 Flint et al.84 have reviewed variations 
in metabolism due to gut microbial metabolites such as SCFAs, 
cholesterol, lipids, vitamins, gasses, and atherogenic compounds, 
which may alter host sensitivity towards metabolic syndromes, 
obesity, cardiovascular disease, and irritable bowel syndrome.

The associations of these microbial metabolites with host aging 
have been explored extensively. Colon bacteria produce SCFAs, 
which are a subset of fatty acids, by fermenting dietary fibers and 
resistant starch.85 Butyrate, propionate, acetate, and valerate are 
common SCFAs derived from the gut microbiome. Butyrate plays 
a significant role in preventing physiological decline during aging. 
It prevents inflammation by downregulating adipogenesis, enhanc-
ing the intestinal barrier, preventing insulin resistance, regulating 
B1 cell activity to prevent cancer, inhibiting histone deacetylase, 
and facilitating apoptosis by counteracting amyloidosis and neuro-
inflammation while also preventing cellular senescence.70,86

Microbes like Akkermansia muciniphila produce acetate and fa-
cilitate the growth of butyrate-producing microorganisms.31 Biagi 
et al.87 observed that the presence of Faecalibacterium prausnitzii, 
a gut inflammation-protectant species, along with Anaerotruncus 
colihominis and Eubacterium limosum, which are butyrate produc-
ers, is characteristic of long-lived people. Additionally, the gut mi-
crobiome profiles of the offspring of elderly parents were found to 
be more similar when they cohabited with their parents compared 
to those who lived separately. This has escalated the incidence of 
pathobionts and opportunistic species in the gut microbiome of co-
habiting family members, indicating an environmental influence.

Epigenetic modifications such as DNA methylation, histone 
modifications, noncoding RNA action, and chromatin remodeling 
affect living organisms throughout their lives.1 Commensals alter 
histone-changing enzymes by modifying their activity or sub-
strates, affecting cell fate and development. High concentrations 
of SCFAs like propionate inhibit histone deacetylase activity and 
protect against colorectal cancer. Butyrate also induces hyperacet-
ylation of histones and stimulates cell differentiation.70

Polyamines are small organic molecules involved in various 
physiological processes, including cell growth, differentiation, and 
apoptosis.88 These gut microbiome-derived metabolites are essen-
tial for normal cellular function and play an important role in ag-
ing (Table 1). Several studies have suggested that polyamines not 
only increase longevity but promote healthy aging by improving 
age-related markers and protecting against age-induced memory 
impairment.88 Levels of polyamines decline with age in various 
tissues, including the liver, kidney, and brain. Additionally, studies 
in animal models have found that increasing levels of polyamines 
can extend lifespan and improve healthspan.70

Reactive oxygen species (ROS) are metabolites containing par-
tially reduced oxygen, primarily produced by the mitochondria in-
side a cell.89 These molecules can cause oxidative stress and dam-
age cellular components such as proteins, lipids, and DNA, leading 
to various age-related diseases and the overall aging process.1 Lac-
tobacillus rhamnosus causes rapid ROS generation in the epithe-
lial lining and induces oxidative stress. ROS also act as signaling 
molecules in inflammatory response generation, the ubiquitin-

proteasome pathway, and regulate post-translational modifications 
such as SUMOylation and neddylation. When commensal bacteria 
contact gut epithelial cells, they produce ROS.70 As we age, the 
body’s ability to regulate ROS production decreases, leading to an 
increase in oxidative damage. This can result in the accumulation 
of mutations and errors in cellular function, causing the gradual 
deterioration of tissue and organ function, ultimately resulting in 
age-related diseases.

Extracellular amyloid is produced by gut microbes and can 
alter proteostasis, forming insoluble aggregates that speed up the 
development of cerebral amyloidosis. The bacterial amyloid load 
increases due to the gastrointestinal system and immune modifi-
cation with age, which affects immune homeostasis. As we age, 
the body’s ability to clear amyloid decreases, leading to its ac-
cumulation and aggregation in the brain. These amyloid plaques 
can interfere with the normal functioning of brain cells, causing 
inflammation, oxidative stress, and ultimately, cell death.90 The 
accumulation of amyloid in the brain is strongly associated with 
the development of AD. Studies have shown that SCFAs can in-
hibit the formation and aggregation of amyloid protein in the brain, 
potentially helping to prevent or slow the progression of AD. Ad-
ditionally, SCFAs have been shown to promote the clearance of 
amyloid protein from the brain by enhancing the activity of im-
mune cells that remove these toxic proteins.70

Age-related neuro-pathologies and GM variations
The brain is separated from the rest of the organs by the blood-
brain barrier. The central and enteric neuronal systems commu-
nicate bidirectionally through the gut-brain axis (also known as 
the microbiome-gut-brain axis), which connects the brain’s cog-
nitive and emotional regions with the peripheral functions of the 
intestine.91 The vagus nerve directly connects the gut to the brain, 
sensing changes in the gut microbiome and influencing brain activ-
ity based on metabolites released by normal gut flora (Table 1).92 
Recent reports suggest that aging, host-microbiome diversity, and 
aging-associated diseases may have a close relationship.59 The hu-
man gut microbiome has been associated with the origin and treat-
ment of multiple neurological disorders such as multiple sclerosis, 
AD, and PD. Interestingly, the incidence and severity of these dis-
eases also increase with age.

Behavior is regulated by gastrointestinal hormones released lo-
cally or by bacterial fragments and metabolites that interact with 
the central nervous system, directly impacting the hypothalamus. 
Additionally, it has been demonstrated that the blood-brain bar-
rier’s permeability and serotonin release are controlled by gut bac-
teria.91 Despite the anatomical separation between the gut and the 
brain, numerous studies indicate that intestinal health substantially 
impacts neurodegeneration.93 There may be gastrointestinal roots 
to neurodegenerative conditions, including amyotrophic lateral 
sclerosis and AD.93 Notably, primary symptoms in a mouse model 
with amyotrophic lateral sclerosis included disease-specific dis-
ruption to intestinal restrictive junctions, higher gut permeability, 
and decreased levels of butyrate-producing bacteria (Butyrivibrio 
fibrisolvens).94

Age-related alteration in the morphology of microglia is termed 
dystrophic microglia and has been intimately linked to neurode-
generative disease.95 Several studies conducted on animal mod-
els to explore the relationship between AD and gut microbiome 
changes have indicated a strong connection between altered gut 
microbes and the progression of the illness.96 A study exploring 
the association of gut microbiome alterations with preclinical AD 
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Table 1.  Microbial-produced metabolites associated with the aging process

Metabolites Effect Microbes associated Reference

Nicotinic acid Positively affects stem cell proliferation in 
the colon helping in intestinal epithelium 
renewal. Advantageous for healthy aging.

Bacillus subtilis 29784 70,71

Lipopolysaccharide 
(LPS)

Insulin resistance due to immune dysregulation 
causes inflammation and disturbed metabolic 
and biochemical pathways leading to metabolic 
diseases. Disadvantageous for healthy aging.

Bacteroidetes and Proteobacteria (produce 
LPS). Firmicutes and Actinobacteria 
(increases LPS absorption)

72,73

Colibactin & 
Bacteroides 
fragilis toxin

DNA damage by these toxins increases the 
chances of colon tumorigenesis which may lead to 
mortality observed in colorectal cancer-associated 
murine models also inflammation pathway role is 
recorded. Disadvantageous for healthy aging.

E. coli and Bacteroides fragilis 70

Short-chain fatty 
acids (SCFA)

SCFAs act as follows: (I) Neurodegeneration, (II) 
Energy homeostasis, (III) Immunomodulatory effect, 
(IV) Gut function and immunity regulation, (V) Anti-
cancerous, (VI) Anti-inflammatory, and (VII) Gut 
dysbiosis prevention. Advantageous for healthy aging.

Butyrate producers (Fusobacterium, 
Clostridium, Eubacterium, 
and Faecalibacterium)

74

Nitric oxide Shown to increase organismal lifespan (C. 
elegans model study) in a gene DAF-16 a 
solo FoxO (forkhead box transcription factor 
class O), i.e. FoxODAF-16-dependent signaling 
pathway. Advantageous for healthy aging.

Lactobacilli, bifidobacteria, and E.coli 70,75

Reactive oxygen 
species (ROS)

Induced oxidative stress and important 
signaling pathways modulation which produced 
diversified results on different model organisms 
related to aging. The role remains unclear.

Lactobacillus rhamnosus caused the 
rapid generation of epithelial ROS

1,70

Hydrogen sulfide Smaller concentrations are used by colonocytes 
and are observed to be associated positively with 
longevity in model organisms. Advantageous for 
healthy aging in a concentration-dependent manner.

Sulfate-reducing bacteria residing 
in the human intestine

70

Bacterial 
polysaccharide 
colonic acid

Mitochondrial homeostasis improvement in C. 
elegans and D. melanogaster studies helping in 
longevity. Advantageous for healthy aging.

E. coli K-12 and other mutants of E. coli 39,76

Polyamines Polyamines help in the following: (I) Age-related 
markers improvement, (II) Age-induced memory 
impairment protection, (III) Longevity increment, (IV) 
Intestinal barrier integrity and function enhancement, 
(V) Intestinal and systemic adaptive immune 
system maturation, (VI) Cancer development due to 
dysregulated polyamine metabolism, and (VII) Pro-
inflammatory M1 macrophage activation inhibition 
by spermine. Advantageous for healthy aging.

Bifidobacterium lactis LKM512 76,77

Indole derivatives Indole-3-Propionic Acid acts as (I) A powerful 
antioxidant; (II) Amyloid-beta fibril formation 
inhibitor (III) Neuroprotective and cytoprotective 
agent against a variety of oxidotoxins (IV) Intestinal 
barrier function, intestinal permeability, and mucosal 
integrity regulator. Advantageous for healthy aging.

E. coli, Bacteroides spp., lactobacilli, 
Clostridium sporogenes, Fifty-one species 
of Bifidobacterium, probiotic Lactobacillus 
spp., Lechevalieria aerocolonigenes. 
Various Peptostreptococcus spp. and 
Clostridium spp. play’s role in promoting 
the synthesis of indoleacrylic acid 
(IA) and indole propionic acid (IPA)

78–81

Phenolic 
derivatives

Help in (I) oxidative stress protection, (II) 
Urolithin exhibits anti-inflammatory and 
cancer prevention, (III) Chemo-preventive 
effects. Advantageous for healthy aging.

Proteus sp., Streptococcus faecalis, 
Bacteroides fragilis, Fusobacterium 
sp., and Clostridium sp.

82,83
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in patients with and without cerebral Aβ deposition in cognitively 
normal individuals.97 It was found that certain genera categorized 
as opportunistic pathogens, including Megamonas, Serratia, Lep-
totrichia, and Clostridium (family Clostridiaceae), were increased 
in Aβ+ cases. However, commensal genera with the ability to 
synthesize lactic acid and probiotic potential, including Victival-
lis, Enterococcus, Mitsuokella, and Clostridium (family Erysip-
elotrichaceae), were decreased in Aβ+ cases.97 An altered gut 
microbiome was observed in AD patients compared to controls, 
with a lower abundance of Firmicutes and Actinobacteria and a 
higher relative abundance of Bacteroidetes.98 In AD patients, fami-
lies of Firmicutes namely Ruminococcaceae, Turicibacteraceae, 
Peptostreptococcaceae, Clostridiaceae, and Mogibacteriaceae, 
along with the genera SMB53 (family Clostridiaceae), Dialister, 
Clostridium, Turicibacter, and cc115 (family Erysipelotrichace-
ae), were less prevalent. However, the families Gemella, Bacte-
roidaceae, and Rikenellaceae, along with genera Bacteroides and 
Alistipes, were more prevalent in the patient cohort. A decline in 
Actinobacteria resulted in a decline of Bifidobacteriaceae at the 
family level and Adlercreutzia and Bifidobacterium at the genus 
level. Additionally, those with AD had a higher abundance of the 
genera Proteobacteria and Bilophila.98

PD is a peculiar neurodegenerative condition marked by the 
loss of substantia nigra cells and has recently been linked to gut 
microbial dysbiosis. In PD patients with motor complications, the 
relative abundance of the genus Blautia of the Lachnospiraceae 
family was decreased, while an increase in the genus Lactobacil-
lus was observed.99 Similarly, Lachnospiraceae incertaes edis and 
Faecalibacterium prausnitzii were less abundant in PD patients, 
while most taxa of the phylum Proteobacteria, especially Entero-
bacteriaceae, were more abundant.99 A study comparing the al-
pha and beta diversity of PD patients and healthy controls after 
14 months of clinical observation showed that the alpha and beta 
diversity was stable in PD patients and healthy controls, with no 
significant change in diversity with respect to disease pathology. 
However, the richness parameter of alpha diversity was reduced 
in both healthy individuals and PD patients.100 It was previously 
reported that Desulfovibrio bacteria were more prevalent in the gut 
of PD patients compared to healthy controls.99 Furthermore, the 
severity of PD was associated with the quantity of Desulfovibrio 
species. These bacteria produce H2S, lipopolysaccharide, and vari-
ous types of magnetite, which likely cause the oligomerization and 
aggregation of the α-synuclein protein, leading to PD.100

Stem cell aging and gut microbiome
Intestinal stem cells play an important role in maintaining intes-
tinal homeostasis and repairing damaged epithelial tissue. These 
cells function in a regenerative manner to generate new tissue 
throughout the growth phase and repair damaged tissue during the 
aging process.101 The interactions between the gut microbiome 
and intestinal stem cells are crucial because, if this interaction is 
comprehended, it may be possible to address various disorders that 
require stem cell therapy, heal wounds, and improve the durabil-
ity of organ transplants.101 A recent study showed a connection 
between hematopoietic stem cells and the microbiome through 
altering metabolic stress.66 Therefore, the microbiota is crucial 
for maintaining microbial homeostasis, regulating metabolism, 
and the innate and adaptive immune systems.101 Furthermore, the 
study reveals that compositional alterations in the gut microbiome 
driven by dysbiosis are related to stem cell aging, metabolic dys-
regulations, stem cells’ epigenetic instability, and abnormal im-

mune system activation.66

In the field of anti-aging, stem cells are regarded to have great 
potential. In numerous organs, it has been demonstrated that as 
we age, stem cells lose their capacity for self-renewal and differ-
entiation and run out of resources.89 The emergence of anti-aging 
medications should address the dysregulation caused by aging that 
affects stem cells’ capacity for differentiation and self-renewal by 
re-regulating intrinsic and extrinsic variables. The host microbi-
ome, hormones, local immune system, systemic inflammation, and 
niche structure are just a few examples of microenvironmental and 
systemic factors that influence stem cell aging.66

Endogenous ethanol is a class of microbiological metabolites. 
Proteobacteria, including E. coli and other Enterobacteriaceae, 
produce ethanol with bacterial origins. High endogenous ethanol 
levels in the human hippocampus inhibit proliferating stem cells 
and reduce progenitor and stem cells.102 Additionally, when more 
ethanol accumulates in the gut, it enhances the permeability of the 
gut by disrupting epithelial tight junctions, particularly zonula oc-
cludens. This enables the movement of pathogenic microbes, their 
endotoxins, and ethanol across the epithelial layer, causing more 
immediate and adverse effects on tissues. As a result, the stem cell 
reserve depletes, hastening the aging process and compensating for 
damaged tissues.103

The host microbiome regulates the generation of aging-associ-
ated stem cells via various pathways, namely Wnt, transforming 
growth factor beta, Notch, JUN N-terminal kinase, and mitogen-
activated protein kinases (p38) signaling pathways. However, it is 
still unclear how the host microbiome influences stem cell func-
tioning in terms of aging.66

Modulation of microbiome for a healthy aging
Over a century ago, Russian microbiologist and Nobel Laureate 
E. Metchnikoff observed that having the wrong kind of intestinal 
microflora could adversely affect health over time.104 He proposed 
that gastrointestinal metabolisms cause putrefactive effects on the 
body, gradually contributing to illness and aging, which can be 
mitigated by regularly consuming fermented dairy products.105 Al-
though his concept initially gained popularity among the masses, it 
only caught mainstream medical attention in the mid-1990s.

Currently, several studies report that aging is associated with 
increased dysbiosis in the gut, where proinflammatory microbes 
are enriched at the expense of beneficial gut commensals.106 The 
gut microbial composition of elderly individuals and centenarians 
is characterized by a reduction in bacterial diversity and depletion 
of health-promoting genera such as Bifidobacterium and Lacto-
bacillus.107 As a result, aging populations may be more prone to 
inflammation and morbidity. The administration of pre- and probi-
otic supplements is recommended as an approach to correct such 
dysbiotic changes in the aging intestinal microbiota.108

Most probiotics used today are bifidobacteria and subpopu-
lations of lactobacilli, widely considered the health-promoting 
constituents of the human microbiome. Several strains of these 
organisms have exhibited anti-aging properties in nematode mod-
els. Strains such as Bifidobacterium longum BB68,109 Lactobacil-
lus gasseri SBT2055,110 L. fermentum MBC2,111 and B. infantis 
ATCC15697 have been shown to enhance the lifespan of C. el-
egans by modulating DAF-16,112 a transcription factor that con-
trols multiple signaling pathways associated with aging and lon-
gevity. Other strains of lactobacilli, such as L. rhamnosus CNCM 
I-3690,113 L. salivarius FDB89,114 and L. fermentum LA12, have 
been shown to improve the life expectancy of C. elegans by exhib-
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iting antioxidative properties.115

In rodent models, the administration of the L. brevis OW38 
strain resulted in reduced expression of senescence markers p16, 
p53, and SAMHD1, which contributed to anti-inflammatory ef-
fects in aged mice.116 In another study, the L. paracasei PS23 
strain showed promising effects in delaying sarcopenia progres-
sion during aging by preserving mitochondrial function.117 Addi-
tionally, Lactobacillus strains such as L. fermentum DR9, L. plan-
tarum DR7, and L. reuteri 8513d significantly reduced telomere 
shortening, while strains L. plantarum AR501 and L. helveticus 
KLDS1.8701 reduced hepatic oxidative stress by elevating the 
gene expression of Nrf2 and other antioxidant genes.118,119 The 
outcomes of these studies directly impact the central hallmarks of 
aging.

Probiotics are generally recognized as safe for human con-
sumption and can impart substantial health benefits to the elderly. 
These benefits include modulation of the microbiome, prevention 
of inflammatory intestinal disorders, enhanced intestinal barrier 
function, stimulation of the innate immune system, and improve-
ments in cognitive function and quality of life.120 Human dietary 
intervention studies involving probiotic supplements have been 
documented to increase beneficial microbes such as bifidobacteria, 
lactobacilli, and enterococci species in the elderly population.121 
Daily consumption of the probiotic strain Bacillus coagulans GBI-
30, 6086 among aged adults has been shown to improve immune 
and gut-related functions by increasing levels of butyrate-produc-
ing species such as Fecalibacterium prausnitzii. Administration of 
certain probiotics can induce favorable responses from the resi-
dents of the elderly human gut, such as Lactobacillus rhamnosus 
GG, which was found to mediate interactions between key mem-
bers of the gut microbiome and the host epithelium by promoting 
anti-inflammatory pathways in the resident microbes.122

The administration of probiotics has been observed to manage 
many age-related pathophysiological conditions affecting the im-
mune system. Studies on elderly human subjects show that pro-
biotic intake can boost immunity and improve several immune-
related markers.123 Dietary supplementation with a mixture of B. 
longum Bar33 and L. helveticus Bar13 strains in elderly humans 
improved their immune response by increasing regulatory T cells, 
B cells, and natural killer cells while decreasing memory T cells.123 
In another study, consumption of L. gasseri KS-13, B. bifidum G9-
1, and B. longum MM-2 produced a less inflammatory cytokine 
profile by maintaining CD4+ lymphocyte levels in elderly hosts.124 
Other studies examining immune-related markers found a decrease 
in levels of the proinflammatory cytokine IL (interleukin)-8 and 
C-reactive protein among the elderly with probiotic intake.125 Fur-
thermore, these studies observed that probiotic supplementation 
could counteract reduced naïve T cell production and increase less-
differentiated T cell populations in aging populations.123

Aside from enhancing immune function and longevity, probi-
otic interventions have been used to improve the quality of life in 
the elderly. Probiotic therapy has been shown to reduce abdominal 
pain,126 improve bowel movements,127 enhance oral health,128 and 
increase vitamin levels in the blood.129 Studies have also demon-
strated that probiotics can positively impact the general well-being 
of the elderly by decreasing anxiety and depression, improving 
cognitive functions,130 and alleviating stress.131

Bifidobacterium is one of the potential candidates for boosting 
longevity by producing polyamine biosynthesis observed in animal 
models.132 When Lactobacillus rhamnosus GG and soluble corn 
fiber were fed to healthier elderly participants, there was a reduc-
tion in chronic inflammation and an improvement in the microbial 

profile.125 In addition to probiotic interventions, physical activity 
plays a pivotal role in modulating the gut microbiome. Regular ex-
ercise has been linked to a diverse and balanced gut microbiome, 
which is crucial for maintaining overall health and preventing age-
related diseases. Studies indicate that regular exercise can modify 
the gut microbiome composition of older individuals towards a 
more favorable state by increasing the populations of beneficial 
bacteria, such as SCFA producers, and by reducing the prevalence 
of potential pathogens.107 This interplay between exercise and the 
gut microbiome can be effectively harnessed to enhance overall 
health and well-being among the elderly. The microbial outline 
and host health have a shared functional relationship; therefore, 
it is recommended to adopt a healthy lifestyle, exercise regularly, 
and maintain a proper diet to balance the beneficial microbiome. 
This balance contributes to longevity and reduces morbidities as-
sociated with aging. For instance, the deteriorating physiology of 
the alimentary canal inevitably impacts the gut microbiome. These 
alterations include elevated inflammation linked to aging, cellu-
lar malfunction (including mitochondrial dysfunction), genomic 
instability, epigenetic dysregulation, and diminished proteostasis, 
which further contribute to the onset of metabolic disorders, chron-
ic illnesses, and altered gut-brain communication.7

Future directions
With the introduction of novel molecular biological techniques and 
advances in next-generation sequencing technologies, we finally 
have a snapshot of the gut microbiome and its taxonomical and 
functional constituents. Understanding factors that bridge the gut 
microbiome and long healthy life is a significant challenge. Ini-
tially, animal models have been used to understand the molecular 
mechanism of aging. Such studies have identified several genes 
associated with both the microbiome and aging. Knock-out studies 
involving these genes can further explore the effects of microbes 
on healthy aging. Various studies have been conducted on healthy 
elderly individuals to characterize their gut microbiome composi-
tion and identify alterations that help delay the onset of age-associ-
ated disorders.133 Many age-related pathophysiological conditions 
are known to influence older adults’ dietary habits, causing com-
positional changes in the gut microbiome that ultimately lead to 
senescence. At the DNA level, microbial function can only be pre-
dicted or assessed based on genetic components that can potential-
ly produce or degrade specific compounds, such as metabolites or 
engage in other enzymatic activities. Evaluating mRNA (metatran-
scriptomics), small molecule (metabolomics), and protein levels 
(metaproteomics) is necessary for a more comprehensive evalua-
tion of microbial functions. Considering that metabolic alterations 
are associated with aging, presumably reflecting changes in the bi-
ological roles of the host and microbiome, metabolic profiling may 
serve as a promising method for determining the biological age of 
a person.134 By analyzing the circulating microbial metabolites, a 
biological aging clock can be established, although this research 
field is still in its beginnings.135 For example, Johnson et al.136 
used the plasma metabolite profiles of individuals aged 18 to 80 
and reported 21 metabolites connected to biological aging, many 
of which had previously been recognized as “microbe-associated 
metabolites”.137 Elevated levels of indole-3-acetate and putrescine 
are linked to biologically younger ages, while a high concentration 
of phaseolic acid is associated with elderly age groups.136 Simi-
larly, metabolites secreted in urine and feces have been investi-
gated in relation to aging clocks, such as phenylacetylglutamine 
(PAG),138 trimethylamine-N-oxide,139 4-cresyl sulfate,138 and 
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p-cresol sulfate (PCS),140 etc. In addition to innovations in me-
tabolomics, proteomic studies are increasingly helpful in compre-
hending the composition and functioning of microbial proteins in 
various health aspects. More comprehensive studies are required 
to evaluate the relationship between the proposed metabolic-prot-
eomic aging clock and the resident microbiome.

Advancements in the different “omics” fields have provided us 
with a clear understanding of various host-microbe interactions and 
their influences on aging. Enrichment of certain taxa, such as Bifido-
bacterium, Christensenellaceae, and Akkermansia, has been shown 
to promote longevity and improve quality of life during senescence. 
To improve the gut microbiome and encourage healthy aging, tech-
niques such as fecal microbiome transplantation (FMT) and oral 
probiotic treatment have been used. Administration of pre- and 
probiotics may mitigate age-related alterations linked to sarcopenia 
and longevity.31 Further studies in this area can potentially enhance 
such taxonomic profiles, imparting positive health benefits to the 
host. More focused studies on metagenomic exploration of the aged 
population would help identify species-level microbial information 
positively associated with the healthy aging process. However, these 
methods suffer from the major limitations of predicting metagen-
omic diversity till the genus level, missing out on species and strain-
level differences.141 Therefore, whole metagenome-based shotgun 
sequencing methods can be used to address these issues and explore 
the strain/species-level diversity of the gut microbiome.

Microbes generally do not exist in isolation and exhibit a bidi-
rectional relationship with several other microbial members in an 
environment. Most current studies focus on identifying individual 
microbial members associated with the aging process. However, 
it may be useful to explore the social behavior of gut microbiome 
members by adopting tools and pipelines to identify co-occurring 
taxa or those taxa that do not occur together. To explore the activity 
of such beneficial taxa and how they are co-associated with each 
other, culturomics or culture-based methods are an alternative ap-
proach. Recent methods such as yeast casitone fatty acid agar can 
be employed to cultivate more than 90% of members of the gut 
microbiome under lab conditions.37

Since age-related disorders are known to increase intestinal 
permeability, regaining intestinal permeability by FMT may be a 
regenerative and successful medicinal technique in producing stem 
cells for the elderly. Nevertheless, more research is needed to de-
termine whether FMT to old recipients from young donors restores 
the ability of stem cells to self-renew, regenerate, and differentiate, 
thereby improving lifespan. To pave the way for discovering thera-
peutic medications for extending lifespan and treating disorders 
linked to aging, more research into the interactions between intes-
tinal stem cells and the microbiome is necessary.

Constructing a reliable aging model based on microbiomes can 
only be possible by integrating different types of approaches and 
data sources. Additionally, novel and advanced computational 
methods are needed considering the heterogeneity and complexity 
of aging and the microbiome. Machine learning models trained on 
metagenomic, transcriptomic, proteomic, and metabolomics data 
can predict microbial behaviors associated with aging. These mod-
els can also account for external factors such as geographical fea-
tures and lifestyle, further refining our understanding of biological 
and chronological aging.142 Furthermore, such advancements can 
assist in modulating the gut microbiome and developing personal-
ized longevity therapies in a clinical context. Therefore, adopting 
a healthy lifestyle with proper nutrition and exercise, along with 
positive modulation of GM through probiotics, can bring us closer 
to prolonged healthy lives.

Conclusions
Hippocrates’ emphasis on the importance of gut health resonates 
through the centuries to our modern understanding of the pivotal 
role of the gut microbiome in human health and aging. Although 
aging is a complex biological process that has yet to be fully under-
stood, we have an increasing volume of evidence supporting the 
existence of a dialogue between the gut microbiome of a host and 
its aging process. Aging brings about changes in the gut microbi-
ome, disrupting its balance and functionality, which can accelerate 
senescence through inflammatory processes and reduced produc-
tion of beneficial metabolites. Advancements in the various “om-
ics” fields have provided us with a clear understanding of various 
host-microbe interactions, their influences on aging, and the en-
richment of certain longevity-associated taxa, such as Bifidobac-
terium, Christensenellaceae, and Akkermansia, offering promising 
avenues for interventions such as FMT and probiotic treatments. 
Although we are still far from solving the “curious case of aging” 
or finding “the path to longevity”, it is possible that a healthy aging 
process with less morbidity and frailty can be achieved through a 
healthy diet and proper modulation of the gut microbiome.
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